Переработка резины


Переработка резины, РТИ

Проблема утилизации отходов в том числе отходов резины в современном обществе остается значительно важной, несмотря на развитие технологии производства новой технологичной и в меру экологическибезопасной продукции.
Складирование и утилизация и захоронение отходов экономически неэффективно и экологически небезопасно, так как при длительном хранении они могут выделять в окружающую среду вещества, способные привести к нарушению экологического равновесия.
К тому же, на момент утраты резиновыми изделиями их эксплуатационных свойств и качеств собственно полимерный материал претерпевает весьма незначительные структурные изменения, что порождает возможность и даже необходимость их вторичной переработки.
Наиболее перспективным представляются способы переработки отходов резиновых изделий, связанные с их измельчением, так как химические методы, такие как пиролиз и сжигание приводят к уничтожению полимерной основы материала.
Различные методы измельчения можно в зависимости от условий проведения процесса подразделить на криогенное измельчение и измельчение при положительных температурах. Несмотря на возможность получения тонкодисперсных порошков резин и малые энергозатраты на собственно процесс измельчения застеклованной резины, криогенная технология обладает весьма существенным недостатком, связанным с высокой стоимостью хладоагентов.

Технологические процессы и оборудование для переработки изношенных шин и других видов промышленных и твердых бытовых полимерных отходов (отработанных изделий из резины, текстиля, кожи, древесины и других природных и синтетических полимеров) осуществляются при положительных температурах. Результаты исследования различных полимеров и композиций показали возможность получения из них порошков, коротких волокон и крошки различной степени дисперсности и применения их в качестве добавок (или основы) при изготовлении новых изделий.

Известно, что в области положительных температур при определенных скоростях деформации и сложном характере нагружения эластомеры разрушаются с небольшими затратами энергии, что связано с существенным снижением ориентационных эффектов. Это дало основание провести широкие исследования с целью определения соотношения энергии разрушения каучуков и резин в единичном акте и энергии, затрачиваемой на измельчение.

Проведенные исследования дали возможность обосновать выбор высокотемпературного скоростного режима деформации, при котором работа разрушения имеет минимальное значение. На основании полученных результатов определены оптимальные конструктивные и технологические параметры процессов измельчения.
Помимо технологических факторов значительное влияние на характеристики процесса оказывает тип измельчителя и его конструктивные параметры. Результаты исследования кинетики измельчения эластомеров в различных аппаратах позволили разработать математические модели процессов измельчения в аппаратах периодического и непрерывного действия и инженерные методы расчета производительности соответствующих аппаратов, выбрать эффективные области применения измельчителей для получения из различных эластомеров и композиционных материалов на их основе продуктов различной степени дисперсности, создать научные основы процессов механического измельчения эластомеров различной природы и определить пути применения данного процесса в резиновой промышленности.
Классификация резин в РФ.

Различают следующие основные группы и типы резин по назначению:

По группам:

Общего назначения, cпециального назначения, в том числе:
  • теплостойкие;
  • морозостойкие;
  • маслобензостойкие;
  • стойкие к действию химически агрессивных сред, в том числе стойкие к гидравлическим жидкостям;
  • диэлектрические;
  • электропроводящие, в том числе антистатические;
  • магнитные;
  • огнестойкие;
  • радиационностойкие;
  • вакуумные;
  • фрикционные (износостойкие);
  • пищегого и медицинского назначения;
Для условий тропического и другого климата

По типам: получают также
  • пористые, или губчатые
  • цветные и прозрачные резины.
Состав резиновой смеси определяет свойства резинотехнических изделий (РТИ).

Резиновые смеси выпускаются в невулканизированном виде вальцованными или калдандрованными:
  • вальцованные - в виде листов размером (500х700) мм, толщиной от 6 до 10 мм, масса одного упаковочного места от 30 до 50 кг.;
  • каландрованные - в виде резинового полотна, намотанного в рулон: толщина каландрованного полотна - от 1,0 до 4,0 мм, ширина каландрованного полотна - от 500 до 1200 мм, масса рулона от 40 до 60 кг.
Динамичный рост парка автомобилей во всех развитых странах приводит к постоянному накоплению изношенных автомобильных шин. По данным Европейской Ассоциации по вторичной переработке шин (ЕТРА) в 2000 году общий вес изношенных, но непереработанных шин достиг:
  • в Европе-2,5 млн тонн;
  • в США-2,8 млн тонн;
  • в Японии-1,0 млн тонн;
  • в России-1,0 млн тонн.
В Москве ежегодно образуется более 70 тыс. тонн изношенных шин, в Петербурге и Ленинградской области - более 50 тыс. тонн...
Объем их переработки методом измельчения не превышает 10%. Большая часть собираемых шин (20%) используется как топливо. Вышедшие из эксплуатации изношенные шины являются источником длительного загрязнения окружающей среды:
  • шины не подвергаются биологическому разложению;
  • шины огнеопасны и, в случае возгорания, погасить их достаточно сложно;
  • при складировании они являются идеальным местом размножения грызунов, кровососущих насекомых и служат источником инфекционных заболеваний.
Вместе с тем, амортизированные автомобильные шины содержат в себе ценное сырье: каучук, металл, текстильный корд.
Проблема переработки изношенных автомобильных шин и вышедших из эксплуатации резинотехнических изделий имеет большое экологическое и экономическое значение для всех развитых стран мира. Невосполнимость природного нефтяного сырья диктует необходимость использования вторичных ресурсов с максимальной эффективностью, т.е. вместо гор мусора мы могли бы получить новую для нашего региона отрасль промышленности - коммерческую переработку отходов.
Не менее перспективным методом борьбы с накоплением изношенных шин является продление срока их службы, путем восстановления.

1. Методы переработки резиновых отходов.

В настоящее время, все известные методы переработки шин можно разделить на две группы:
  1. Физический метод переработки шин
  2. Химический метод переработки шин

1.1. Физические методы переработки резиновых отходов
В настоящее время все большее значение приобретает направление использования отходов в виде дисперсных материалов. Наиболее полно первоначальная структура и свойства каучука и других полимеров, содержащихся в отходах, сохраняются при механическом измельчении.
Установление взаимосвязи между размерами частиц материала, их физико-химическими и механическими характеристиками и затратами энергии на измельчение и параметрами измельчающего оборудования необходимо для расчета измельчителей и определения оптимальных условий их эксплуатации.
Процесс измельчения, несмотря на кажущуюся простоту, очень сложный не только по определению характера, величины и направления нагрузок, но и по трудности количественного учета результатов разрушения.
Ниже представлена классификация имеющихся в настоящее время способов измельчения вторичных резин.

Способы измельчения вторичных резин

По температуре измельчения:
  • При отрицательных температурах
  • При положительных температурах
По механическому воздействию:
  • Ударом
  • Истиранием
  • Сжатием
  • Сжатием со сдвигом
  • Резанием
Согласно данной классификации рассмотрим следующие технологии:

1.2. Низкотемпературная технология утилизации шин.
При низкотемпературной обработке изношенных шин дробление производится при температурах -60°С ... -90°С, когда резина находится в псевдохрупком состоянии. Результаты экспериментов показали, что дробление при низких температурах значительно уменьшает энергозатраты на дробление, улучшает отделение металла и текстиля от резины, повышает выход резины. Во всех известных установках для охлаждения резины используется жидкий азот. Но сложность его доставки, хранения, высокая стоимость и высокие энергозатраты на его производство являются основными причинами, сдерживающими в настоящее время внедрение низкотемпературной технологии. Для получения температур в диапазоне -80°С ... -120°С более эффективными являются турбохолодильные машины. В этом диапазоне температур применение турбохолодильных машин позволяет снизить себестоимость получения холода в 3-4 раза, а удельные энергозатраты в 2-3 раза по сравнению с применением жидкого азота. Технология не внедрена. Производительность линии 6000 т/год.

1.3. Описание технологической линии переработки шин.
Изношенные автомобильные шины подаются в машину для удаления бортовых колец. После этого шины поступают в шинорез и далее в ножевую роторную дробилку. Затем следует магнитный сепаратор и аэросепаратор. Для охлаждения порезанные и предварительно очищенные куски резины подаются в холодильную камеру, где охлаждаются до температуры -50°С...-90°С. Холодный воздух для охлаждения резины подается от генератора холода воздушной турбохолодильной машины. Далее охлажденная резина попадает в роторно-лопаточный измельчитель, откуда она направляется на повторную очистку в магнитный сепаратор и аэросепаратор, где отбирается резиновая крошка менее 1 мм ... 0,5 мм, а также более крупная и затаривается в мешки и отправляется к заказчику.

1.4. Бародеструкционная технология переработки покрышек.
Технология основана на явлении "псевдосжижения" резины при высоких давлениях и истечении её через отверстия специальной камеры. Резина и текстильный корд при этом отделяются от металлического корда и бортовых колец, измельчаются и выходят из отверстий в виде первичной резино-тканевой крошки, которая подвергается дальнейшей переработке: доизмельчению и сепарации. Металлокорд извлекается из камеры в виде спрессованного брикета. Производительность линии 6000 т/год.

Описание технологической линии:

Автопокрышка подаётся под пресс для резки шин, где режется на фрагменты массой не более 20 кг. Далее куски подаются в установку высокого давления.
В установке высокого давления шина загружается в рабочую камеру, где происходит экструзия резины в виде кусков размерами 20-80 мм и отделение металлокорда.
После установки высокого давления резинотканевая крошка и металл подаются в аппарат очистки брикетов для отделения металлокорда (поступает в контейнер)от резины и текстильного корда, выделение бортовых колец. Далее остальная масса подаётся в магнитный сепаратор, где улавливается основная часть брекерного металлокорда. Оставшаяся масса подаётся в роторную дробилку , где резина измельчается до 10 мм.
Далее вновь в кордоотделитель, где происходит отделение резины от текстильного корда и разделение резиновой крошки на две фракции:
менее 3 мм;
от 3 до 10 мм.
Отделившийся от резины текстильный корд поступает в контейнер.
В случае если резиновая крошка фракцией более 3 мм интересует потребителя как товарная продукция, то она фасуется в бумажные мешки, если нет, то она попадает в экструдер-измельчитель.
После измельчения вновь в кордоотделитель. Текстильный корд - в контейнер, а резиновая крошка - в вибросито, где происходит дальнейшее её разделение на три фракции:
I - от 0,3 до 1,0 мм;
II - от 1,0 до 3,0 мм;
III - свыше 3,0 мм.
Фракция резиновой крошки более 3 мм возвращается в экструдер-измельчитель, а резиновая крошка I и II фракции отгружается покупателю.

1.5. Полностью механическая переработка шин
В основу технологии переработки заложено механическое измельчение шин до небольших кусков с последующим механическим отделением металлического и текстильного корда, основанном на принципе "повышения хрупкости" резины при высоких скоростях соударений, и получение тонкодисперсных резиновых порошков размером до 0,2 мм путем экструзионного измельчения полученной резиновой крошки. Производительность линии 5100 т/год.

Описание технологической линии:
Технологический процесс включает в себя три этапа:
  • предварительная резка шин на куски;
  • дробление кусков резины и отделение металлического и текстильного корда;
  • получение тонкодисперсного резинового порошка.
На первом этапе технологического процесса поступающие со склада шины подаются на участок подготовки шин, где они моются и очищаются от посторонних включений.
После мойки шины поступают в блок предварительного измельчения - агрегаты трехкаскадной ножевой дробилки, в которых происходит последовательное измельчение шин до кусков резины, размеры которых не превышают 30х50 мм.
На втором этапе предварительно измельченные куски шин подаются в молотковую дробилку, где происходит их дробление до размеров 10х20 мм. При дроблении кусков обрабатываемая в молотковой дробилке масса разделяется на резину, металлический корд, бортовую проволоку и текстильное волокно.
Резиновая крошка с выделенным металлом поступает на транспортер, с которого свободный металл удаляется с помощью магнитных сепараторов и поступает в специальные бункеры. После металлические отходы брикетируются с помощью пресса для брикетирования (пакетировочного пресса).

На третьем этапе куски резины подаются в экструдер-измельчитель. На этой стадии обработки происходит параллельное отделение остатков текстильного волокна и отделение его с помощью гравитационного сепаратора от резиновой крошки. Очищенный от текстиля резиновый порошок подается во вторую камеру экструдера-измельчителя, в котором происходит окончательное тонкодисперсное измельчение.
По выходу из экструдера - в вибросито, и где осуществляется рассев порошка на 3 фракции.
1-ая фракция -0,5…0,8 мм
2-ая фракция - 0,8…1,6 мм
3-яя дополнительная фракция - 0,2…0,45 мм (поставка по заказу)

1.6. Новейшая технология переработки (утилизации ) шин
Золотая медаль 26-го Международного салона изобретений, прошедшего весной 2000 года в Женеве, присуждена способу озонной переработки изношенных шин, предложенному группой российских ученых и инженеров. Суть технологии - в "продувании" озоном автомобильных покрышек, что приводит к полному их рассыпанию в мелкую крошку с отделением от металлического и текстильного корда.

При этом новая технология значительно экономнее всех существующих и, кроме того, абсолютно экологически безвредна - озон окисляет все вредные газообразные выбросы. В России созданы две опытные озонные установки, их суммарная производительность - около 4 тыс. тонн резиновой крошки в год.
Изношенные автомобильные шины как вторичный энергоресурс (химические методы переработки)
Речь идет о методах, приводящих к глубоким необратимым изменениям структуры полимеров. Как правило, эти методы осуществляются при высоких температурах и заключаются в термическом разложении (деструкции) полимеров в той или иной среде и получению продуктов различной молекулярной массы. К этим методам относятся сжигание, крекинг, пиролиз.

Существуют два способа сжигания с целью утилизации энергии: прямой и косвенный.
В первом случае шины, грубоизмельченные или целиком, сжигают в избытке кислорода. Иногда грубоизмельченные шины добавляют к другому сжигаемому материалу для повышения его теплотворной способности (теплотворная способность резины составляет 32 ГДж/т, что соответствует углю высокого качества).
Так в США Фирма "Waste Management Inc" сооружает установки по дроблению шин и поставляет резиновую крошку в качестве топлива на целлюлозно-бумажные комбинаты и цементные заводы. Также резиновая крошка как топливный материал используется в виде 10% добавки при сжигании угля.
Этой же фирмой проводится эксперимент по сжиганию резины крупного дробления (до 25 мм) в циклонных топках энергетических котлов. Доля резины составляет 2-3% от массы угольного топлива.
Сложность процесса дробления изношенных шин (особенно с металлокордом) стимулировала развитие технологии сжигания шин в цельном виде. В Англии фирма "Avon Rubber" эксплуатирует печи для сжигания шин в цельном виде с 1973 г., т.е. имеет уже почти 20-летний опыт в этой области.
В США, в свою очередь, развивается строительство электростанций, использующих в качестве топлива только автомобильные шины. Фирма "Oxford Energy" построила и эксплуатирует в г. Модесто электростанцию мощностью 14 МВт для сжигания 50 тыс. т. шин в цельном виде. На основании успешного опыта сжигания шин в США планируется построить 12 таких электростанций.
В Великобритании рассматривается вопрос строительства электростанций мощностью 20-30 МВт для сжигания 12 млн. шин в год массой 90 тыс. т.
Из стран СНГ по такой технологии работают лишь в Казахстане.
Одним из главных недостатков переработки сжиганием является тот факт, что при сжигании изношенных шин, как и при сжигании нефти, уничтожаются химически ценные вещества, содержащиеся в материале изношенных шин.

Во втором случае на сжигание поступает газ, полученный в процессах переработки изношенных шин, например, при пиролизе (основаны на термическом разложении отходов при отсутствии или большом дефиците кислорода с целью сохранения углеводородного сырья). Пиролиз (от греч. pyr — огонь, жар и lysis — разложение, распад), превращение органических соединений в результате деструкции их под действием высокой температуры.
Энергия горючего газа используется для получения горячей воды или водяного пара при помощи теплообменников.
На Международной выставке-конгрессе "Высокие технологии. Инновации. Инвестиции “ был представлен проект по созданию эффективной системы сбора и комплексной утилизации покрышек в Петербурге и Ленинградской области. Сутью проекта является оригинальный способ утилизации измельченных автопокрышек совместно с горючим сланцем, который позволяет на газогенераторах, стоящих в городе Сланцы, утилизировать до 100 тыс. тонн старых покрышек и резины в год, при этом получая жидкое и газообразное топливо.
Так при термообработке целых и измельченных шин наиболее высокий выход масел наблюдается при 500°С, при 900°С отмечается наибольший выход газа. При этом выход продуктов определяется только температурой, а не размерами кусков шин. Из тонны резиновых отходов можно получить пиролизом 450-600 литров пиролизного масла и 250-320 кг пиролизной сажи, 55 кг металла, 10,2 м3 пиролизного газа.

В США в настоящее время фирмой "Firestone Tyres" проведены успешные опыты по трансформированию резины в метанол с получением пылевидной сажи, соответствующей стандарту для резинотехнического производства. Первая установка имеет производительность по метанолу 300 т/сутки. Установка рассчитана на переработку шин легковых автомобилей диаметром 50 см. Основным процессом деструкции резины для дальнейшего трансформирования продуктов разложения в метанол является пиролиз в окислительной камере при температуре 1000°С. Для переработки шин необходимо их разрезать на части с отделением борта, который используется как побочный товарный продукт.
Жидкие и газообразные продукты пиролиза можно использовать не только как топливо. Жидкие продукты пиролиза можно использовать в качестве пленкообразующих растворителей, пластификаторов, мягчителей для регенерации резин. Пек пиролизной смолы является хорошим мягчителем, который может использоваться самостоятельно или в смеси с другими компонентами. Тяжелая фракция пиролизата как добавка к битуму, использующемуся в дорожном строительстве, может повысить его эластичность, устойчивость к холоду и влаге.
Из газообразной фракции пиролиза можно выделять ароматические масла, пригодные для применения в производстве резиновых смесей. Низкомолекулярные углеводороды могут быть использованы в качестве сырья для органического синтеза и в качестве топлива.

Восстановление шин

Само по себе шинное производство — одно из самых энергоемких — постоянно наращивает мощности. Уничтожение отработавших шин, пиролизом, описанным выше, еще более энергоемко, а для сжигания 3-4 тыс. покрышек требуется такое же количество кислорода, какое поглощает небольшой европейский городок за месяц.
1:2 - таково соотношение продаж новых и восстановленных покрышек в странах Западной и Центральной Европы и Скандинавии.
Как это не покажется странным, но среди фирм, занимающихся восстановлением покрышек, лидируют шинные заводы.
Так компания Marangoni (Италия) кроме производства покрышек для грузовых и легковых автомобилей и автобусов выпускает оборудование и материалы не только для восстановления покрышек, но и для их безотходной утилизации.
Существует несколько технологий восстановления изношенного протектора. Наиболее распространены нарезка и горячая вулканизация специальной гладкой ленты с одновременным формированием рисунка (этот процесс был хорошо известен у нас в стране как «наварка»).
Однако, самые большие надежды и перспективы связаны на сегодняшний день именно с «холодной» (при температурах до 100°С) вулканизацией с применением лент с заранее нанесенным рисунком. В большинстве случаев для этого используется лента, равная размерам основных типов покрышек. Однако та же Marangoni успешно реализует технологию восстановления покрышек с помощью готовых протекторов кольцеобразной формы. Специальный станок растягивает резиновое кольцо и надевает его на подготовленный бреккер.

Процесс восстановления
Процесс начинается с визуального контроля, в результате которого отсеиваются покрышки с видимыми дефектами. Затем следует проверка шины под давлением, после которой колесо поступает на участок, где с него снимаются остатки старого протектора.
После устранения мелких дефектов, вскрытых после снятия старого протектора, осуществляется процесс подготовки каркаса к обработке клеем. Затем наносится клей, в состав которого входят вещества, активизирующие процесс вулканизации, и прокладочная лента, по составу напоминающая сырую резину. После всех этих операций на шину накладывается протектор фирмы "Эллерброк".
Следующий этап - закладка колеса в оболочки, называемые энвелопами. Полученный "бутерброд" подается в автоклав, где при температуре чуть ниже +100°С происходит "холодная вулканизация". На финишных же операциях осуществляется проверка покрышки под давлением и придание колесу товарного вида.

Компания PRESSMAX является ведущим производителем оборудования для переработки ТБО, в частности прессов для макулатуры и других отходов и вторсырья.
Ознакомиться с перечнем прессов для мусора можно в разделе Оборудование. Там бкдкт представлены характеристики каждого пресса, а также фото и видео работы прессов.

  В Санкт-Петербурге: 8 (812) 409-30-77
  Бесплатный звонок: 8 (800) 1000-798